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Abstract

It is shown that a metrizable spadg with completely metrizable separable closed subspaces,
has a hereditarily Baire hyperspa&a X) of nonempty compact subsets &f endowed with the
Vietoris topology V. In particular, making use of a construction of Saint Raymond, we show
in ZFC that there exists a non-completely metrizable, metrizable spas@h hereditarily Baire
hyperspace K (X), tV); thus settling a problem of Bouziad. Hereditary BairenesskfX), t¥)
for a Moore spaceX is also characterized in terms of an auxiliary product space and the strong
Choquet game. Finally, using a result of Kunen, a non-consonant metrizable space having completely
metrizable separable closed subspaces is constructed under 231 Elsevier Science B.V. All
rights reserved.
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0. Introduction

A topological spacé€X, t) is said to beconsonantf the upper Kuratowski topology on
the hyperspace of closed subsetXafoincides with the cocompact topology. Consonance
was introduced by Dolecki, Greco and Lechicki in [10,11] and has been subsequently
studied by several authors (see, e.g., [1,3-5,24]). It has been establishedettat
complete spaces, in particular, completely metrizable spaces, are consonant [11]. On
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the other hand, a completely regular 1st countable consonant space is a Prohorov space
(see [5]) and hence is hereditarily Baire.

An interesting problem in this respect, posed by Nogura and Shakhmatov [24,
Problem 11.4], is to find a non-completely metrizable, metrizable consonant space. It is
not possible in the realm of separable co-analytic spaces [5], and the answer is independent
within the analytic spaces [4].

Itis also known (see [3]) that the hyperspaceX) of all nonempty compact subsets of a
metrizable consonant spa&esndowed with the Vietoris topology’, is hereditarily Baire.

If we compare this result with the above mentioned problem of Nogura and Shakhmatov,
it is natural to consider the following question of Bouziddes there exist a ZFC example

of a non-completely metrizable, metrizable spAcsuch that the hyperspac& (X), t)

is hereditarily Baire?

It is one of the purposes of this paper to affirmatively answer this question (see Theo-
rem 4.8), making use of a ZFC construction of Saint Raymond [26] of a non-completely
metrizable, metrizable space, each separable closed subspace of which is completely
metrizable. In fact, we show that all metrizable spaces having completely metrizable
separable closed subspaces have hereditarily Baire hyperspaces (cf. Corollary 4.7).

In the light of these results another natural question aridess there exist a non-
consonant metrizable space with completely metrizable separable closed suBspaees
answer is yes under CH, as it is demonstrated in Theorem 5.2 using a result of K. Kunen.
A natural candidate for a ZFC solution of this problem would be the above mentioned
space of Saint Raymond; on the other hand, this space is a non-separable hereditarily Baire
space, which is neither analytic nor co-analytic (see Remark 4.9), hence it is also a good
candidate for a ZFC solution of the Nogura—Shakhmatov problem mentioned above.

Baireness of(K (X), %) was first studied in [20] using the Banach—Mazur game
(see [25] or [15]). This method was then generalized in [29,30] to get results concerning
Baireness of various hypertopologies. Another topological game, the so-called strong
Choquet game (see [7] or [15]), was then employed in [31,32] to characterize complete
metrizability of hypertopologies. Note that complete metrizability (&f(X), t¥) is
equivalent to complete metrizability of (since, for metrizableX, the Vietoris topology
on K (X) coincides with the Hausdorff metric topology dn(X), see [17]); however,
hereditary Baireness af is only necessary, not sufficient for hereditary Baireness of
K(X) (see Remark 4.2). Results of Section 4 shed more light on hereditary Baireness
of (K(X), t¥) through results of Debs [8] (see also Telgérsky’s paper [27]) concerning a
characterization of hereditary Baireness using the strong Choquet game.

1. Preliminaries
Throughout the pape¢X, t) is a Hausdorff space an#f (X) the set of nonempty

compact subsets of. Denote byw the nonnegative integers. The Vietoris topolady
on K (X) (cf. [21]) has as a base sets of the form
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(Uo,...,Un)z{AeK(X): AC UUk andA N U #@forallkgn},
k<n

wherely, ..., U, € T andn € w; denote byB3Y this canonical base. Givene X, denote
by X the t-closure of the range of in X. In general,A will stand for ther-closure of
ACX.

PutX* ={x € X“: x € K(X)}, and forUy, ..., U, C X write

(Uo, ..., Up) = {x eX*:xcC U U, andx (k) € Uy forall k gn}.
k<n

Then the family5* of the sets(Un, ..., U,)* with Uy, ..., U, € t, forms a base for a
topologyz* on X*. Observe, that* is finer than the relative Tychonoff product topology
on X*; thus,(X*, t*) is a Hausdorff space.

Recall, that(X, ) is a developablespace, provided it has a countable development,
i.e., a sequencfy,}, of open covers ofX such that for eachh € X andU € 7,x € U,
St(x, Gy) = U{G € G,: x € G} C U for somen € w. A regular, developable space is a
Moore space

Lemma 1.1. If (X, ) is metrizable, theriX*, t*) is a Moore space.

Proof. Let d be a compatible metric o/, and H the corresponding Hausdorff metric
on K(X) (which is compatible with the Vietoris topology oki(X) [21]). The symbol
By (x, n) (respectivelyBy (K, n)) will stand for the operl-ball aboutx € X (respectively
open H-ball aboutK € K (X)) of radius ¥n. For everyx € X* andn > 0, puts =
t(x,n)=minfk >n: x C Uigk B;(x(i), 3n)} and define

B*(x,n)={y e X*: Vi <t(x,n), d(y(i),x(i)) <1/nandH(%,¥) < 1/n}.

Then B*(x,n) is t*-open, sincex € (B;(x(0), 3n), ..., By (x(t), 3n))* C B*(x,n). For
all n > 0, denotegG,, = {B*(x,n). x € X*} and fix somex € X*. Consider ar*-
neighborhoodU* = (Uy, ..., Uy,)* of x and find anng > 0 so that for each < m,
By(x(i),n0) C U;. Thenx € (Uy,...,U,) =U and Stx,H,) Cc U for somen > no,
whereH, ={By(K,n): K € K(X)}.

We will show that Str, G3(n+m)) C U*: if y € St(x, Ga(,+m)) then there exists some
x’ € X* such thatx, y € B*(x’, 3(n + m)). It means that (i), y(i) € By(x'(i), 3(n +
m)) for eachi < t(x’,3(n + m)) and ¥,y € By(x/,3(n + m)) C By (x',n); thus,
d(x(i),y(@)) <2/@(n+m)) <1/nforalli <t(x’,3(n+m)),soy(i) € Bs(x(i),n) CU;
for eachi < m (sincem < t(x’, 3(n + m))). Furthermorey € St(x¥, H,) Cc U, soy C
Uigm U; and hencey € U*. This proves thatX*, t*) is developable.

As for regularity of(X*, t*), observe thatUy, ..., U,)* is thet*-closure of(Up, . . .,
U eB*. O
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2. Games

For details of the following exposition of games we refer the reader to [9], where the
authors consider a so-called transitive ga@elayed by two playerse and 8 on the
domainD = Dom(G) equipped with two transitive relations, and<g. These relations
determine theule of the game as follows: play@ picks some:g € Dom(G) first, then at
thenth move, withn > 0, playera chooses:, <4 u,—1, if n is odd and playeg chooses
u, <p up—1, If nis even. The sequenée,: n € o} is then aun of the gameG. A strategy
is a functions : |, ., D" — D. If we specify awin conditionfor playera (respectively
B), we can define avinning strategyfor playera (respectivelyg) as a strategy, such
thata (respectivelys) wins every runfu,: n € w} of G compatible witho, i.e., such that
u, =o(uo,...,u,—1) for all oddn (respectively, for all evem). The gameG is called
y-favorable(for y € {«, 8}), providedy possesses a winning strategy. Two ga@esnd
H areequivalent provided for anyy € {«a, 8}, G is y-favorable if and only ifH is y-
favorable.

Let G and H be two transitive games for which we denote by the same symbols
<q and <g the relations defining their respective rulesylfis one of the players, then
v will denote the opponent player. game morphisnirom G onto H is a mapping
¢ :Dom(G) — Dom(H) satisfying for anyy € {«a, B}, u,u’ € Dom(G) andv € Dom(H)
the following conditions:

ML) ' <y u= @) <y p(u);

M2)  v<y, W)= ' u' <, uandp@’) <; v;

(M2 Yo au': o) <q v;

(M3) y winstherun{u,: n € w}in G < y wins the run{g(u,): n € w}in H.
Note that (M2) is a consequence of (M2) if the following condition is fulfilled:

(M4) 3Ja e Dom(G): Yv e Dom(H), v <g ¢(a).

Theorem DSR. If there exists a game morphism from a transitive gathento another
transitive gameH , thenG and H are equivalent.

Proof. See [9], Theorem 4.5.0

Given a topological spacE with an open basg define
EX.B)={x,U)eX xB:xeU}.
The so-calledstrong Choquet gamd™ (X, B) with £(X,B) as domain, is played in
accordance with the rule defined by the following relatiens <g on£(X, B):
x',U") <q (x,U) &< U’ c U andx’ =x,
(x',U')<pg(x,U) = U'CU.
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Playera wins the run{(x,, U,): n € o} in I'(X, B), provided)
wins.

If I'(X, B) is y-favorable for some open basefor X (y € {«, 8}), thenI"(X, B') is y -
favorable for each open bagéfor X. Indeed, if we consider a mapping £(X, B) — B
such thatx € h(x,U) c U for each(x,U) € £(X, B) and define the reIatiortZ on
E(X,B)yas(x',U") <! (x,U) <= U’ Ch(x,U) andx’ = x, then

U, # @; otherwiseB

new

Proposition 2.1. The gamd,(X, B) governed by the relationsg and <g is equivalent
to I'(X, B).

We may therefore use the symbbl(X) for the strong Choquet game on without
specifying the basg.

Consider two collection§ X, B;): s € S} and{(Y;, Dy): s € S} of topological spaces.
Let G, = I'(Xy, By) andHy = I' (Yy, Dy); further, assume that there exist strong Choquet
game morphismg, : £(X;, By) — £(Y;, Dy) for eachs € S such that for every € S and
x € X thereis some € Y, with ¢ (x, X5) = (y, Yy). LetG = I'(X,B) andH = I"'(Y, D)
be the strong Choquet games on the product spaces[ [, ¢ Xs; andY = [],.¢ Y5,
respectively, with the respective Tychonoff product canonical b&sasdD. Define the
mappinge:£(X, B) — £(Y, D) as follows: putg(x, [[,cgUs) = (¥, [[,e5 Vs), Where
Us; = X for all but finitely manys € S and (y(s), Vi) = ¢s(x(s), Uy) for all s € S. It
follows that

Proposition 2.2. The mapping is a game morphism betweéhand H.

Recall that a topological space isBaire space provided the intersection of any
countable collection of open dense subsetX d§ dense inX; further, X is hereditarily
Baire, provided every nonemptytosedsubspace is a Baire space.

Theorem D. Consider the following properties for a topological spaég 7):
(a) X is hereditarily Baire,
(b) I'(X) is nots-favorable,
(c) X has no closed countable dense-in-itself subsets.
Then
(i) for a 1st countable regular space, (a) < (¢) = (b);
(i) fora Moore spaceX, (a) < (b) < (¢).

Proof. (i) See [8], Corollaire 3.7 and Proposition 2.7.

(ii) As for (b) = (a), observe thatGs subspaces of a spadée such thatl"(X) is not
B-favorable are Baire spaces [8, Corollaire 2.3]; further, closed subsets of a Moore space
areGs-sets. O
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3. Thestrong Choquet game and K (X)

For anyU = (U, ..., U,) € BY (respectivelyU = (U, ..., U,)* € B*) denotel =
(Uo, ..., U,) (respectivelU = (U, ..., U,)*), which is ther'-closure (respectively*-
closure) ofU (see [21, Lemma 2.3.2]), 96 is well-defined.

We can define a gamé* on £* = £(X*, B*) as follows:

(x,U) <4 &', U) & x=x"andU c U,
(x,U)<p(x',U) < UCU.
Moreover, define a game® on&¥ = £(K (X), BY) as follows:

(A, U) <4 (A, U") &= A=A"andU c U,
(A,U)<g (AU < UCU.

Remark 3.1. Observe that ifX is a regular space then in view of Proposition 2Zt,is
equivalenttol" (X*, B*) andI'V is equivalent ta" (K (X), BY), respectively.

ToeveryU = (U, ..., U,)* we canassigl/’ = (Uy, ..., U,). This assignment is well-
defined, since

Ucv=U'CV", 1)

whereU = (U, ..., U,)* andV = (Vy, ..., V,,)*. Indeed, ifA € U" we can find an
XA, v) € X* such thate 4 ) (i) € U; for eachi <n andx4,y) CA. Thenx s, vy e U C
V,whenced € V¥, sinceA C U, ¢, Ui C U, Vj. Now define the mapping: £* — &Y
via

jsm
px,U)=(>,U".

Theorem 3.2. Suppose that the compact subsets of a regular, 1st countable ¥pace
separable. Thep is a game morphism of * onto I'"".

Pr oof.

e (M1): It suffices to use (1) and that fdr, V € B*, Ucv implies U’ c V¥, which
can be shown similarly to (1).

e (M2) for @: assume thatA, V) <4 ¢(x, U) for some(A, V) € E¥ and(x,U) € &£*.
Then

A=X and VCU". 2

DenoteV = (Vy, ..., V,) andU = (Uy, ..., Uy)*. Itis not hard to show thak c UV if
and only if

UVic JUu; andvj<m3k<n: VicU;. (3)
k<n j<m
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Observe by (2), thatt =x € V, so for alli € w there exists & < n with x(i) € V; and,
for all k < n, there is some € w with x (i) € V;. Therefore, for each < m we can define
a nonempty opeﬂ/j/. such that

x(evicUcuin (]
x(J)EVk
Furthermore, ifk < n is such thatV; does not participate in the definition of any of
U]/. for j < m, then we can find the smallegt > m such thatx(ix) € V;. Denote by
p the maximum of thesé;, and for eachmm < j < p put U]/. = ﬂx(j)EVk Vi and let
p+1 = Uk<n Vi £ U =(Uy, ..., UI/,H)* thenx e U’; thus, (x, U’) € £*. Moreover,

in virtue of (3), U<, Vi C Uj<n Uj and cIearIyU/ c U; for all j < m, whence
(x,U) <4 (x,0).

Finally, Ul@ U/ C ngn Vi and for allk < n there existd < p such thatU; C V;,

which means thatU")¥ c V. Consequently,
p(x,U) = (% U") <p (A, V).

e (M2) for 8: assume thatA, V) <g ¢(x, U) and adopt the notation from the previous
case. TherV C U and hence, without loss of generality, we may assumerthat: and
VicU;forall j <m.Leta; e ANV; andV/ € t be such that; € V/ C Vl.’ C V; for each
i <n.Also, by compactness ef, we canfindv, , e twith AC V, ., c V. C Ui, Vi
and denotd/’ = (Vq, ..., V, ,)*. SinceA is separable we can fing, € X* such that
x(A,U/) (l) =a; for eaChl < n andf(A’U/) =A. Then(X(A’U/), U/) (S S*, further,

CITRILY U') < (x,U) and ©(X AU U= (E(A,U’y (U/)U) <a (A, V).

e (M2'): By (M4) it suffices to assure that

Ix, W) e E*V(A, V) eE': (A, V) <p p(x, W).

This can be done foW = X* and anyx € X*.

e (M3): consider a rur{(x,,U,): n € w} in I'*. Assume thatx wins this run, i.e.,
that there exists a € (,., U,. Then clearlyx € (), ., (Un)", S0« wins the run
{px,, Up): new}={(x,, Up)"): n € w}in I'’. Conversely, itx wins{p(x,,U,): n €
w} in I'Y, then we get somet € (), (Un)". DenoteU, = (Ug,..., Uy, )*, where
without loss of generality assume that. 1 > m, for all n € w. Since for each even,
Un+1 cU,, we haveU”+1 Cc U} for eachi < m,. Now A € (U,+1)", so there exists
x' e U’”rl N A foralli < m,.By compactness of we getany; € A, which is the limit of

some subsequence pf!: n € w}. Then for alli < my, x; € U”Jr1 cul. Deflnex e X%
viax (i) =x; foralli € w. Itis not hard to see that C A is compact and: eN At
means that wins the run{(x,,,U,): n€w}in I'*. O

I‘IE(L)

In view of Theorem 3.2, Theorem DSR and Remark 3.1 we get:

Theorem 3.3. Suppose that the compact subsets of a regular, 1st countable Xpace
separable and € {«, B}. Then the following are equivalent

(iy I'(K(X))isy-favorable

(i) I'(X*)isy-favorable.
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4. Hereditary Bairenessof K (X)

Theorem 4.1. Let(X, t) be a Moore space. The following are equivalent
(i) (K(X), V) is hereditarily Baire
(i) I"'(X*) is notB-favorable.

Proof. In a Moore space all the conditions of Theorem 3.3 are satisfied, so Theorem D(ii)
and the fact thak (X) is a Moore space if and only X is [23] yield the desired result. O

Remark 4.2. Hereditary Baireness of a Hausdorff spa<ds necessary for hereditary

Baireness ofK (X), V) (sinceX embeds as a closed subspackiiX)), however, itis not

sufficient. Indeed, if we take the hereditarily Baire (separable) metric spa¢¢2] having

a non-hereditarily Baire squa’?, then by Theorem D(ii), playet has a winning strategy

o in the strong Choquet game &f?. This strategys generates a winning strategy f8r

on X*: indeed, it suffices fog to follow whato dictates on théirst two coordinate spaces

Consequentlyl” (X*) is g-favorable and (X) is not hereditarily Baire by Theorem 4.1.
Another way of showing it is by using that the $ebf at most two-element subsets of

X is a closed subspace ff(X) and the natural mapping &f2 ontoT is perfect; henc&

is not hereditarily Baire, since a regular space, which is a perfect preimage of a hereditarily

Baire metric space is itself hereditarily Baire (see even more generally [6, Théoréme 2.1]

or [32, Theorem 5.1]).

Theorem 4.3. Let (X, t) be metrizable. The following are equivalent
(i) (K(X), ") is hereditarily Baire
(i) (X*, ) is hereditarily Baire.

Proof. See Theorem 4.1, Lemma 1.1 and Theorem D(ii}

Theorem 4.4. Suppose thatX;}rcs is an at most countable collection of Moore spaces.
Then the following are equivalent

() Tlies K (Xy) is hereditarily Bairg

(i) K([1xc; X&) is hereditarily Baire.

Proof. K (Xy) is a Moore space for all € I [23], so[[,.; K (Xx) is also a Moore space.
Therefore, by Theorem 3.3, Proposition 2.2 and Theorem D{ij),; K (Xx) is hereditarily
Baire if and only if I'([ [;c; X;. [ [xc; 7" (X1)) is not B-favorable. SinceX = [],; X«
is a Moore space, as well &(X), in view of Theorem 4.1 it is enough to prove that
(I Tker X5+ Txer T (X)) is homeomorphic tX™*, 7*(X)).

Indeed, it is a routine to prove, that the mapping, assigning to egoh € [[..; X;
(where x; = (xr.i)ico € X for all k € I) the element((xx,i)ker)ico € X* IS @
homeomorphism. O

Remark 4.5. An application of the previous theorem in the space of continuous partial
maps with compact domairBx (studied in [18] or more recently in [12,19]) is exhibited
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in the upcoming paper [13], where various completeness propertié% ofincluding
hereditary Baireness ariZech-completeness, are investigated.

Theorem 4.6. Suppose thatX, 7) is a regular space and the compact subsetX aire
separable and of countable character. Then the following are equivalent

(i) (K(X), 1Y) is hereditarily Baire

(i) (K(Y), ") is hereditarily Baire for each separable closed subspHce X .

Proof. Observe thaK (Y) is closed in(K (X), t¥) for a closedY c X, whence (i)= (i)
follows. Now notice that by [22, Theorem 3K (X), tV) is 1st countable and by [21,
Section 4], it is regular. To see (i (i), take a countable closed subsebf (K (X), tV)
and consider the closed separable Bet W C X. Then in view of (ii), (K(Y), t%)
is hereditarily Baire and is a closed subspace(K{X), tV); thus, by Theorem D(i),
F C K(Y) is not dense-in-itself, consequentlif (X), V) is hereditarily Baire by The-
oremD(i). O

The following improves Proposition 5 of [3]:

Corollary 4.7. Suppose thatX, ) is a Tychonoff space and the compact subset¥ of
are separable and of countable character. If the separable closed subspacéesef
consonant, thek (X), tV) is hereditarily Baire.

Proof. Let Y be a separable closed subspaceXof Then by Proposition 5 of [3],
(K (Y), tV) is hereditarily Baire and the above Theorem 4.6 appli€s.

Corollary 4.8. Let X be a metrizable space with completely metrizable separable closed
subspaces. TheiK (X), V) is hereditarily Baire.

Proof. It suffices to note, that in a metrizable space all the conditions of the previous
corollary are satisfied; further, completely metrizable spaces are consonant [11, Theo-
rem4.1]. O

Consider the product spaeg’, where the first uncountable ording is endowed with
the discrete topology. Lef = { f € 0} f is strictly increasing Denote by. the infinite
countable limit ordinals. For ea¢he £ pick a sequence: € E such that supganxg} =&
and denot&g = {x¢: & € L}.

It was proved in [26, Lemma 3], under ZFC, thdt= E \ Ep is a non-completely
metrizable space each separable closed subspace of which is completely metrizable.
Therefore the following theorem is a consequence of Corollary 4.8:

Theorem 4.9. (ZFC) There exists a metrizable, non-completely metrizable spasech
that (K (X), V) is hereditarily Baire.

Remark 4.10. By a classical theorem of Hurewicz (i.e., Theorem D<{ajc)—see [14] or
more generally [8,28])Z is hereditarily Baire. It is non-separable and hence not analytic;
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further, it was observed by F. van Engelen (see his review of [26] in Zentralblatt fur
Mathematik—Zbl. 861.54030), that is not co-analytic. O

By weakening the conditions aXi we still get a result on Baireness &f(X):

Theorem 4.11. Suppose thak is a 1st-countable, regular space such that the compact
subsets are separable ark(Y) is hereditarily Baire for each separable closed subspace
Y C X. Then(K (X), ") is a Baire space.

Proof. The finite subsets ok form a dense 1st countable subspace of the regular space
K (X). Now, an argument analogous to that of in Theorem 4.6 shows, that all separable
closed subspaces 6K (X), tV) are Baire spaces, which proves by [8, Corollaire 3.5], that
(K (X), V) is itself a Baire space. O

5. A result on consonance

It is our aim in what follows, to construct a non-consonant, metrizable space with
completely metrizable separable closed subspaces. The construction uses CH; in general,
the problem is open.

Given a 1st countable Hausdorff spacelet B be a base foX and denote by" c 5*
the set of all sequencé¥, € B: n € w} corresponding to a neighborhood system for some
pointin X. EndowT with the topology inherited from the product topology Bff, with
BB having the discrete topology.

Theorem 5.1. Let X be a 1st countable, compact space. The following are equivalent
(i) T is consonant
(i) X is metrizable
(iii) T is completely metrizable.

Proof. (iii) = (i) is provenin [11, Theorem 4.1].

(i) = (i) Themapf : T — X defined viaf (Un)n) = (e, Un IS OpeN, continuous and
onto, hence, by Corollary 8 in [4]f is compact covering (i.e., for each compactt X
there is a compacB C T such thatf(B) = A). Consequently, there is a compact set
To C T, such thatf (To) = X, whencef |7, is a perfect mapping onto the compact space
X. Itimplies, thatX is metrizable.

(i) = (iii) Fix a compatible metrie/ on X and let7’ be the set of all centered sequences
{U, € B: n € w} satisfying Iim,_)ooa(ﬂign U;) = 0, whereé(A) denotes the diameter
of A. SinceX is compact, it is not hard to see tH&t= T, furtherT’ is aG;s subset o3¢,
henceT is completely metrizable. O

Theorem 5.2. (CH) There is a metrizable non-consonant space each separable closed
subspace of which is completely metrizable.
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Proof. Let X be the Hausdorff, compact, 1st countable, hereditarily Lindel6f, non-
metrizable space with no isolated points constructed by Kunen under CH in [16]. Then
the spacd” from the previous theorem is not consonant, siicies not metrizable. Also
note, that the closed separable subspacesarfe metrizable.

If A is a countable subset @, thenA is completely metrizable. Indeed, létbe some
compatible metric ok = f(A), wheref is the mapping from the proof of Theorem 5.1.
Since X is perfectly normal, we can find a sequer{¢g,: n € w} of open subsets ok
such tha{",,., W, =K.

For alln,k, j € w, the setW, , ; of all sequencesU;); € B for which there exists
m € w such thatd # U,, ¢ W, N i<k Ui andd(K N Uy) < 1/j, is open in3%. To argue
that

FHE)Y= () Waki: 4)

nk,jew

take somgU;); € f~1(K) first. Then(U;); is a neighborhood system of some K, so
by regularity ofX, for eachn, k, j € w we can find some: € » such thate € U,, C U,,, C
W, N ﬂigk U; andK N Uy, is contained in the oped-ball of radius ¥(2;) aboutx and
hences(K NU,,) < 1/j.

Conversely, assume that;); € ﬂn’k’jean,k,J-. Since X is compact,(K N U;);
intersects in a singletom € K, which is the only element of); U;, becausg); U; C
M, W = K. SinceX is compact and 1st countable, it follows tti&%); is a neighborhood
system forx and henceU;); € f~1(K).

Itis clear now by (4), thay ~1(K) is aG; subset oB3%; on the other handd ¢ f~1(K),
hence A is completely metrizable. O
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